Analytical solution of anisotropic plastic deformation induced by micro-scale laser shock peening
نویسندگان
چکیده
Laser shock peening (LSP) is a process to improve material fatigue life by introducing compressive residual surface stress in a target. The residual stresses are introduced when a high-intensity laser impinges on an ablative layer deposited on the surface of the target material. The interaction between laser and the ablative layer creates a high pressure plasma that leads to plastic deformation. If the laser spot size is of the order of a few micrometers, the potential exists to use this process to enhance the fatigue life of micro-scale components or to selectively treat highly localized regions of macroscale components. However, for such micro-scale laser shock peening (lLSP), the laser spot size is likely to be of the order of the material grain size. Therefore the material properties must be treated as anisotropic and heterogeneous rather than isotropic and homogeneous. In the present work, anisotropic slip line theory is employed to derive the stress and deformation fields caused by lLSP on single crystal aluminum which is oriented so that plane strain conditions are admitted. The predicted size of the deformed region is compared with deformation measurement by atomic force microscopy (AFM) and with lattice rotation measurement by electron backscatter diffraction (EBSD). In addition, single crystal plasticity finite element simulations are performed for the process. The results suggest that the analytical solution captures the salient features of the deformation state and is able to predict the size of the resulting plastically deformed region. 2007 Elsevier Ltd. All rights reserved.
منابع مشابه
Study of anisotropic character induced by microscale laser shock peening on a single crystal aluminum
The beam spot size used in microscale laser shock peening is of the same order as grain size in many materials. Therefore, the deformation is induced in only a few grains so that it is necessary to treat the material as being anisotropic and heterogeneous. In order to investigate the corresponding anisotropic features, different experimental techniques and three-dimensional finite element simul...
متن کاملSpatially Resolved Characterization of Residual Stress Induced by Micro Scale Laser Shock Peening(1501)
Single crystal Aluminum of (001) orientation were shock peened using laser beam of 12 micron diameter and observed with X-ray micro-diffraction techniques based on a synchrotron light source. The X-ray micro-diffraction affords micron level resolution as compared with conventional X-ray diffraction which has only mm level resolution. The asymmetric and broadened diffraction profiles registered ...
متن کاملSpatially Resolved Characterization of Residual Stress Induced by Micro Scale Laser Shock Peening
Single crystal aluminum and copper of (001) and (110) orientation were shock peened using laser beam of 12 micron diameter and observed with X-ray micro-diffraction techniques based on a synchrotron light source. The X-ray micro-diffraction affords micron level resolution as compared with conventional X-ray diffraction which has only mm level resolution. The asymmetric and broadened diffraction...
متن کاملCharacterization of Plastic Deformation Induced by Microscale Laser Shock Peening
Electron backscatter diffraction (EBSD) is used to investigate crystal lattice rotation caused by plastic deformation during high-strain rate laser shock peening in single crystal aluminum and copper sample on ~11̄0! and (001) surfaces. New experimental methodologies are employed which enable measurement of the in-plane lattice rotation under approximate plane-strain conditions. Crystal lattice ...
متن کاملCharacterization of Heterogeneous Response of Al Bicrystal Subject to Micro Scale Laser Shock Peening
This letter shows the ability to perform characterization of the strain field in an aluminium bicrystal subject to plane strain condition induced by micro scale laser shock peening. Intensity contrast method, previously used in topographic measurements of strain fields in thin films is employed here. Our results show that this method is applicable for measurements of the plastically deformed bu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007